当前位置: 首页 > 程序化交易量化投资 > 摩根女神教学:Python机器学习与量化交易、定价实战训练课培训视频课程
股票技术
五域论堪+徐文明+王心吾
关铁良+刘永+鬼股市
知钱俱乐部+AG作手
CCTV内训+毕晓波
股市剑客+短线王龙侠虎哥
牛仔网+猎人X+若风
冯矿伟徐小明+任家班
财富讲坛+无为股理学堂
艾古+泛舟+张彤
吴迪+边惠宗+马宗本+郭向非
macd金融+王春雷
黑马王子+时间轨迹S
宁俊明+黄菘+上海章盟主
股市实战派+李飞+东方神起
与庄共舞+无门问缠
中金学院+股市特战队学院
李易天+锐海+迈克陈
李君壮+陈浩+围城
安阳+余适安+孙阳
麦氏理论(陈少川+曹伟)
陈文图周雷周超
范博+张利+徐世荣
殷保华+张晓青+陈志平
伍朝晖+信仰看盘+李锋
欧阳之光+王超+文太彬
鲁召辉+绿水+张馨元
谷为陵+股盗船长+张兴国
实战狙击手+凌云+李雨青
刘梓明+陈晨+柯中
一苇渡江+张翠霞+唐学鹏
解新忠+百合独角兽+孙怀青
史月波+跑赢大盘的王者王宁
汇盈+混江龙游资+小辉
真庸+北京牛蒡+带头大哥
路雷+北京卧龙+股市战神
潜海先生+西藏高原+龙虎榜
汤沪平+王健+周宇(君雨)
姜新宁+李宇鹏+蔡森
刘彬+姚工+王岩+张宁
赵永超+楚风+启明乐投
赵志俊+花荣+鲁山狼
财智人生+王超+王盼盼
魏宁海+李丰+王雪伟
陈敏+于理义+陈力杨
金印盘口+夏鹏程+杨丽
胡云龙 李晓通+凌鹏
朱家泓+廖崧沂+廖繼弘+曾光辉
赵红力+义阳+倪德鑫
奇名+蓝筹+魏春阳
任宇腾+张实+黄智超
赵泓霖+余思敏(余芳芳)
股海明灯李亚明+韩月龙+密探
边风炜+孙清(江海)+陈一帆
陈威伯+陈雨农+汪海华+周弘
廖英强+蔡宗园+董钟祥+王焕昌
郭海培+蔡正华+黄洛婷+林新象
刘智辉+朱永海+吴树文
范炳杰+孙伊廷+张清华+欧文
刘峻荣+毛鹏皓+杨世光+薛武辉
钱鑫淼+李开宇+韩云
猎鹰+刘知行+风雷
柯昌武+林整华+薛松
吴道鹏+祝利荣+高奕峰
赵昌运+游立星+李海云
擒牛+风行+东财+头寸
朱玄+澄泓财经+谢庆军
邓育平+黄靖哲+彭祖
陈若超+刘洪明+桂建
邓良春+郑国荣+周代运
文秋明+股市猎豹张学林
宋华涛+无为李栋+天生孟子
曾伟光+三湘涨停王
火山投资元小弟+陈斌宇
淘天机操盘手+童鸣
邢玉春+李海云+赵立新
溪流竹海+方怀+赵一鸿
路引子+房光明+毛利哥
田青+袁建新+周昕
技术流+顾勇菁+威威威vvv
吴国平财经+曾海龙
股王争霸赛逍遥+黄杰
黄肇基+汪洋+王彬
孙亮+林国宝+情绪周期
马安强+杨秉源+于天宇
老马掘金+王喜龙+短线吧
术道有方+胡明哲+陈译辉
期货技术
孙捷+自在期货+老胡
李昕+波动大法逮虾户
杨国良+冯成毅+胡高龙
浅悟期货+鬼推磨+林洸兴
丁洪波+王彬彬+孔令艺
王红英+张扬+杨清+纪楠枫
方国治+李汉军+吴东润
李志尚+张书金+小雨
青泽+汪滔+张光峰
洪守杰+期货小鳄鱼
李永强+兰玉飞+张野
其它
江济永+夏琳+杨大霄
铸剑先生+期货一灯
无形一阳+赚钱养舟舟奚百成
万浩明+张斯祁+期海
吴洪涛+孙鹏+周冠良
张紫卫+张林忠+胡嘉佳
刘志刚+陈扬+凌六六
林存福+吴伟淼+王建
白云龙+陈金辉+保帅
韩旭+沈良+交易玫瑰
王凌毅+王刚+李炳增
淘大豆+拔胖+刘森动量
侯婷婷+丁圣元+胡高龙
高彬+蛋氏理论+王飞飞
葛定臣+汪景芳+汤健
陈海洋+北冥有鱼+阿路
孟德稳+周道+文勇+毛煜春
左威+李奇磐石计划
陈向忠+愚者+周耀华+李小军
王春禄 王月松+温勇+新期程
谢磊+郭攀+李靖+赵晨
徐银勋+翟鹏飞+张光峰
李陈亮+蒋焱+老郭郭华
黄耀国+曹扬慧+董略
徐莉+石头黑色系+张品
林朋+大金融家蒲晓伟
李大坤+咏春+何巍+交易使徒
郭翼翔+豆粕王子吴平
韩冬+张拥军+陈伟
潘启祥+吴飚+李幸福
丁伟锋+东泽+黄磊
若尘+Huashan
京城蛋黄派操盘手+刘子阳
武程翔+耕耘交易室+赵邵文
奚鹏阳+邓波+李法师XTony
顺和博士+三禾+董建刚
汪星敏+蔺华进+石帆AK47
寻我先生+卓越+期货求魔
期海泛沙王辉+秦老师
虎哥+杨乔茵+龙头之灵魂
楼启华+尹景林+交易匠人
神奇的小韭菜+理想的白鹤
戴忠义+周承基+徐闻钊
沪上十二少(李咏泽)+无名大侠
荣期三乐李守军+林和锡
刺客团队黄海金+苏冰
星空期货+楚哥聊期张可
铁血盈毛哥+大鱼+余林
王韬溢+吴大葱+一米先生
元吉波浪+期货小月+王也
期权技术
谢晨彦+何博明+云天大师
余力+于红+复利博士财经
黄旭东+韩冬+肖淳心飞天
曾光辉+林昌兴+祖峰
吴金潮+沈发鹏+户涛
管大宇+许哲
陆丽娜+余德传+美投君
丁鹏+小马+天启量投
王勇+石头老兵+甘灿荣
顿修学院周力军+伽马
陈竑廷Jack+吴保全
William Hou+崇阳
外汇技术
盛文兵+张磊+铁力商学院
敬松+麦肯斯+马金子+4nm5
杰克交易学院Jack+鹰猎系统
星雅龙+逍遥八式+邹衍
戴翀+漫富王世青+交易三哥
许亚鑫+爱思潘+拐点交易笨笨
蓝狐国际金融学院+张真卿
周一+魏军+台湾英雄哥
王国兴+景良东+竹祥汇说
闫兵+阿拉丁+时空交易大师林凌
孙亚程+周游+雷鸣+陈金
james16+Sniper交易俱乐部
中国领汇团队+幕来交易学院
Mr华+福汇威力学堂+解药波浪
蚂蚁外汇+郎采凤+易振营
kore trading交易俱乐部
陈吉明+许遵静+王大圣
MSG迈盛+喜禅+王强+K-sniper
曼士顿金融交易俱乐部+领悟交易
邵悦华交易学院+雷公资本
汇圣财经+吴旭根+唐大千
聚金汇神翟奇+凡泰达蒙团队
Tradingninja西南刘林荣
三位一体+李天亮+黄丽菲
图解订单流交易+技术流兔子
MK TRADING STRAREGY
Andy123法则+巴赫交易
Forexman富偲曼陈海清MAYA
熊猫交易学社教练+达哥
金十交易学院TTPS-alpha
八位数花园+Mete Kaplan
李全忠+许佳聪+投机实验室
可汗TRADING HUB Khan
路雅交易学院+登全子学院
股票期货外汇通用理论
海悦学院+本心易道+老K动量
李进财+谢佳颖
江恩波浪道氏理论
百年经典机构+辜枫+王思俊
月风+威龙先生+白仪野生交易员
百年一人+东方哲纳理论
罗威+彭明允+翁禾晴+李泽澄
鹿武希刘惠伦罗宾+幽灵
黑嘴+孙国生+期海苍狼
缠素论+成交量价差分析法
次序无敌+张广阔(西楚雄风)
帝氏+中道交易+易道
Price+王凯元+逍遥船长
全息K线+白狐江恩+财神金融资子
Tim Sykes+张宏建+锡安金融
毕肯证券学院+Jim做交易
萧明道+相农丛林法则
主控战略K线内陆老师
数字江恩+寂寞青山+云飞扬
玄同+翁鸿尧+林昌兴
孟洪涛(威科夫)+郭睿+周金涛
邵立胜+李尧+王其峰
胡任标+吕佳霖+孟弘熹
智佣(刘智+梁爽易波浪)
陈凯诸葛就是不亮+期指再回首
M3交易员俱乐部赫胖+梅客坤
布鲁+裴恩(星象预测)
李佳宜黑杰克Jack+台湾老余
超绩投资客J-law+裸K哥
程序化交易量化投资
股票投资其他老师课程
电子书

浏览历史

摩根女神教学:Python机器学习与量化交易、定价实战训练课培训视频课程

摩根女神教学:Python机器学习与量化交易、定价实战训练课培训视频课程

next

  • 商品货号:ECS000505
    商品库存: 112
  • 商品总价:
    商品点击数:1299
  • 本店售价:¥188元
    用户评价: comment rank 5
  • 购买数量:
    购买此商品可使用:20 积分

商品描述:

商品属性

 “量化投资”是指投资者使用数理分析、计算机编程技术、金融工程建模等方式,通过对样本数据进行集中比对处理,找到数据之间的关系,制定量化策略,并使用编写的软件程序来执行交易,从而获得投资回报的方式。其核心优势在于风险管理更精准,能够提供超额收益。
而那些靠数学模型分析金融市场,并用复杂的数学公式和计算机在稍纵即逝的市场机会中挖掘利润的投资家则被称为宽客(Quant)。在如今的量化投资领域,已经有了无数模型系统软件,在强大的Python语言和数据库的支持下,量化投资早已不再是一个神秘的领域。
量化交易在各大投资银行和对冲基金公司中成为交易系统的主流,而机器学习也在量化交易中扮演着举足轻重的角色。

为了帮助大家对量化投资进行系统学习
邀请摩根斯坦利纽约总部量化女神
推出Python|机器学习与量化交易、定价实战训练课

本课程意在传授金融数据处理分析、利率曲线拟合、微分方程数值解、量化交易投资策略建模以及机器学习在量化交易中的应用, 并以Python代码实现程序化交易。学生可以熟练掌握Yahoo Finance connection, sklearn、QS Trader、statsmodel等Python packages (库)。另外,本课程还会传授量化部门面试求职技巧,帮助求职者拿到理想工作offer。

课程目标
1. 熟练掌握Python语言
2.掌握Python金融数据处理分析技能
3.基本量化交易策略学习与Python实现
4.机器学习理论与Python实现
5.机器学习于量化交易的应用与Python程序化实现
6.掌握投行Python衍生品定价
7.传授面试求职技巧, 改进简历,如何在求职面试中求胜,拿到Dream Company的offer


摩根斯坦利纽约总部量化金融部门—— Diana
纽约大学数学金融硕士学位。就业于摩根斯坦利纽约总部量化金融部门,主要从事algorithm trading ,stock volume预测,机器学习研究,固定收益和外汇定价建模以及衍生品定价。建立了利率和外汇的定价模型和股票的统计套利模型,对销售及交易类数据作机器学习分析有独到的研究。
她为公司trading book的重要变量建立系统化自学习建模框架,为每个季度的资金计划提供指导性统计数据。还联立了卡尔曼滤波模型和时间序列模型为大单交易量做出预测,为交易员提供交易建议。利用卷积神经网络模型对公司的高净值客户的理财投资预期数据进行预测学习,为下一个年份的投资量做出量化指导。
Diana还在她所在的部门担任面试主管,为候选人进行面试。对分享自己的经历和帮助他人获得事业上的成功有着强烈的热情。她有3年在美国学生设计实习项目的指导经验,帮助学生完善他们的简历,准备面试,并在金融行业取得成功。

课程内容
第一节 Algorithmic Trading In Python Overview(Python量化交易概述)
课程介绍overview
1.what is algo-trading? Compare to retail traders
(对于散户来说,量化交易是什么?)
2.why Python? Python notebook简介
(Python应用于量化交易的优势)
3.交易系统简介
4.Python for finance常用packages : numpy, scipy, pandas, statsmodel, scikit-learn, matplotlib 
(Python在金融中的应用以及各种库函数)
5.量化交易的就业分析和职业发展

第二节 Python for Finance 常用packages 学习I
1.学习数据分析基础 library (库) -- NumPy:
● Creating Arrays(创建数组)
● Using Arrays and Scalars(使用数组和标量)
● Indexing Arrays(索引数组)
● Array Manipulation(数组操作)
● Array Functions(数组函数)
2.学习数据分析高阶 library – Pandas:
● DataFrames and file reading(DataFrames和文件阅读导入)
● Index and Reindex Objects, Index Hierarchy(索引和索引命令对象,索引的层次结构)
● Select/Drop Entry(选择/删除条目)
● Data Alignment, Rank and Sort、Handling missing data(数据对齐、等级和排序,处理缺失数据 )
● Summary Statistics(汇总统计)
3. 统计分析和最优化 library—scipy
● Optimization(优化)
● Statistical test(统计检验)
● Linear algebra-linalg (线性代数)
4. 画图 library—matplotlib
● How to plot basic graphs for different types(如何绘制基本图形为不同的类型)
● How to plot multiple graphs and do arrangement(如何绘制多个图形并进行排列)
● Advanced plotting (高级绘图/数据可视化)

第三节 Python for Finance 常用packages 学习 II
1.统计模型library--statsmodel
● Regression and generalized regression models(回归和广义回归模型)
● Time series analysis (时间序列分析)
● Statistical test(统计检验)
● Distributions (分布)
2.金融数据处理
● Frequency of data(数据的频率)
● How to source data from Bloomberg、Yahoo Finance and so on(如何得到源数据)
● Data quality check and cleaning(smooth, seasonality adjustment, fill-forward and so on)(数据质量检查和清理)

第四节 金融数据建模与预测/风险测度因子
1.Statistical learning and techniques overview
(统计学习和技术概述)
2.Financial time series analysis
(金融时间序列分析)
3.Forecasting measures and techniques overview
(预测措施和技术概述)
4.Performance evaluation and risk measures
(绩效评估和风险评估度量)

第五节 传统量化交易策略和Python实现
1.Event-driven trading strategies and implementation
(事件驱动的交易策略和实施)
2. Statistical trading strategies and implementation
(统计交易策略和实施)
● Moving-average trade(移动平均交易)
● Pair trading (配对交易)
3. Parameter optimization(参数优化)
● Overfitting and cross-validation(过度拟合和交叉验证)
● Grid search(网格搜索)

第六节 高阶量化交易策略 I—贝叶斯模型
1.Advance algorithmic trading overview
(高级算法交易概述)
2. What is Bayesian statistics
(什么是贝叶斯统计)
3. Bayesian Inference methods
(贝叶斯推理方法)
4. Markov Chain Monte Carlo 
(MCMC 马科夫链门特卡罗)
5. Linear regression model based on Bayes
(基于贝叶斯的线性回归模型)
6. Bayesian stochastic volatility model
(贝叶斯随机波动模型)
7. Python举例和模型代码实现

第七节 金融时间序列分析-I
1.序列相关系和random walk 
(随机游走)
2.平稳时间序列模型-AR/MA/ARMA  
(波动率预测模型)
3.非平稳时间序列模型-ARIMA/异方差模型-GARCH 

第八节 金融时间序列分析-II
1.State-model and Kalman filter(状态模型和卡尔曼滤波 )
 Kalman filter theory (卡尔曼滤波器理论)
● Application to regression and pair trading in Python (卡曼滤波器在回归及配对交易方面的应用)
2.Hidden Markov Models (隐式马科夫模型)
● HMM theory  (HMM理论)
● Application to market regime detection in Python(HMM在市场机制判定/探测的应用)

第九节  机器学习于量化交易中的应用I
1.Introduction to machine learning 
(机器学习介绍)
2.Linear regression and MLE
(线性回归和MLE)
3. Decision Tree(决策树)
● Entropy and information gain theories (熵与信息论基础)
● Pruning the tree (算法优化-减枝)
● Advanced tree methods—bagging, boosting, random forest and son on (高级树形理论)
4. Python implementation(如何用Python实现)

第十节 机器学习于量化交易中的应用II
1.Introduction to Support Vector Machine(支持向量机的介绍)
● Maximum margin classifier(最大边缘分类器)
● Linear SVM(线性支持向量机)
● Kernel function and higher dimension mapping(核函数与高维数据投影)
2. Cross-Validation for model selection(交叉验证的模型选择)
● Leave one out  (留一验证)
● K-fold   
● Bias-variance trade-off (偏差-方差的折中)

第十一节 机器学习于量化交易中的应用III
1.Introduction to Clustering(介绍集群  聚类)
● Clustering theory(集群理论 聚类)
● Implementation to financial market(在金融领域的应用)
2. Neural network(神经网络)
● Introduction to artificial neural network(人工神经网络)
● Introduction to recurrent neural network(递归神经网络)
3. Unsupervised dimensional reduction techniques(非监督降维技术)
● PCA/CCA
● Implementation to financial market (在金融领域的应用)

第十二节 机器学习于量化交易中的应用IV
1. Introduction to QS Trader in Python
● QS Trader overview  (QS Tader概况)
● QS Trader for backtesting   (利用XXX的回测)
2. ARIMA+GARCH Trading (XXX交易)
● Strategy on Stock Market (股票市场策略)
● Indexes Using R  (用R语言做什么不明白问老师)
3. Cointegration-Based Pairs Trading using QSTrader
(基于QSTrader的协同一体化/结合下的配对交易)
4. Kalman Filter-Based Pairs Trading using QSTrader 
(基于QSTrader的卡曼滤波配对交易)
5. Supervised Learning for Intraday Returns Prediction using QSTrader  
(利用监督学习预测日间交易回报)

第十三节 Python for ODE PDE numerical methods (Python for 偏微分方程数值解)
1.ODE examples in Finance
(常微分方程金融例子)
2.Forward Backward Crank-Nicholson Methods for ODE
(向前向后CN方法)
3.Explicit Implicit and CN methods for PDE
(显式隐式CN方法)
4.Option pricing examples for PDE
(偏微分方程期权定价例子)

第十四节 Python衍生品定价-I
1. 蒙特卡洛模拟基础
2. 常见随机过程离散化
3. European Option(欧式期权)蒙特卡洛模拟定价
4. Exotic option(奇异期权定价)
5.Least-square monte-carlo for American option pricing 
(最小二乘蒙特卡罗对美式期权定价) 

第十五节 Python衍生品定价-II
1.Common variance reduction techniques for Monte-Carlo and application to option pricing
(常见蒙特卡罗方差降低方法与期权定价)
2.Importance sampling and change of measure 
(重点抽样级数和测度变化)
3.Incremental risk charge model and Gaussian Copula for credit risk
(信用风险的IRC模型和高斯核)

第十六节  Quant (宽客)求职面试和职业规划
如何高效地通过面试,成为一名优秀的量化分析师。

培训视频截图:

用户评论(共0条评论)

  • 暂时还没有任何用户评论
总计 0 个记录,共 1 页。 第一页 上一页 下一页 最末页
用户名: 匿名用户
E-mail:
评价等级:
评论内容:
验证码: captcha